F. Pereira dos Santos | 2023-11-21

WG Q.1: Quantum gravimetry in space and on ground

Chair: Franck Pereira dos Santos, Observatoire de Paris-PSL, France
Vice-Chair: Marvin Reich, GFZ, Germany


On ground, quantum sensors based on matter wave interferometry with cold atoms are very well suited for rapid and very precise gravity sensing. They can be used as registration instruments and as absolute gravimeters with sub-µGal accuracy. Mobile devices are developed for field campaigns and large-scale stationary devices for achieving extreme precision. While the former enable new strategies for local and regional gravity surveys, the latter will provide a new gravity standard in the future.

In space, the long-term stability and low noise level of quantum sensors will allow improving the spatial gravity field models in GOCE-type gradiometer missions. The determination of mass transport processes on Earth at low and medium degrees in GRACE-type missions will benefit from quantum accelerometers providing the measurement of the specific non-conservative forces. In addition, hybrid systems (i.e. a combination of electrostatic and atom-interferometric accelerometers) can cover a wider spectral range which will greatly support navigation and inertial sensing on ground and in space.

The goal of this WG is to elaborate the major benefit and most promising applications of atom interferometry for gravimetry and inertial sensing in space and on ground.


  • Terrestrial quantum gravimeters and applications scenarios (including airborne and marine instruments)
  • (Hybrid) accelerometers for space missions and spacecraft navigation
  • Atom interferometric gradiometry
  • Elaboration of further applications / space demonstrator (e.g. pathfinder) like atmosphere research, relativity tests, etc.
  • Elaboration of synergies between different science topics in a single mission (Earth observation and fundamental physics, navigation and space exploration, several scenarios for Earth observation, e.g. gravimetry, atmospheric research and magnetometry)


Brynle Barrett (U New Brunswick, Canada)
Olivier Carraz (ESA)
Rainer Dumke (NTU, Singapore)
Przemyslaw Dykowski (IGiK, Poland)
Andre Gebauer (BKG, Germany)
Ashton Flinders (USGS, USA)
Yuichi Imanishi (U Tokyo, Japan)
Jeffrey Kennedy (USGS, USA)
Markus Krutzik (HU Berlin, Germany)
Thomas Lévèque (CNES, France)
Federica Migliaccio (POLIMI, Italy)
Roland Pail (TU Munich, Germany)
Ernst Rasel (LU Hannover, Germany)
Steffen Schön (LU Hannover, Germany)
Shuqing Wu (NIM, China)
Nan Yu (JPL, USA)
Nassim Zahzam (ONERA, France)

Selected publications

Sven Abend, Baptiste Allard, Aidan S. Arnold, Ticijana Ban, Liam Barry, Baptiste Battelier, Ahmad Bawamia, Quentin Beaufils, Simon Bernon, Andrea Bertoldi, Alexis Bonnin, Philippe Bouyer, Alexandre Bresson, Oliver S. Burrow, Benjamin Canuel, Bruno Desruelle, Giannis Drougakis, René Forsberg, Naceur Gaaloul, Alexandre Gauguet, Matthias Gersemann, Paul F. Griffin, Hendrik Heine, Victoria A. Henderson, Waldemar Herr, Simon Kanthak, Markus Krutzik, Maike D. Lachmann, Roland Lammegger, Werner Magnes, Gaetano Mileti, Morgan W. Mitchell, Sergio Mottini, Dimitris Papazoglou, Franck Pereira dos Santos, Achim Peters, Ernst Rasel, Erling Riis, Christian Schubert, Stephan Tobias Seidel, Guglielmo M. Tino, Mathias Van Den Bossche, Wolf von Klitzing, Andreas Wicht, Marcin Witkowski, Nassim Zahzam, and Michal Zawada,
"Technology roadmap for cold-atoms based quantum inertial sensor in space"
AVS Quantum Sci. 5, 019201 (2023), https://doi.org/10.1116/5.0098119

Abrykosov, P., Pail, R., Gruber, T., Zahzam, N., Bresson, A., Hardy, E., Christophe, B., Bidel, Y., Carraz, O., Siemes, C.,
Impact of a novel hybrid accelerometer on satellite gravimetry performance.
Advances in Space Research 63, 3235–3248 (2019), https://doi.org/10.1016/j.asr.2019.01.034

Laura Antoni-Micollier, Daniele Carbone, Vincent Ménoret, Jean Lautier-Gaud, Thomas King, Filippo Greco, Alfio Messina, Danilo Contrafatto, Bruno Desruelle,
Detecting volcano-related underground mass changes with a quantum gravimeter
GRL, Volume 49, Issue 13, 2022,  https://doi.org/10.1029/2022GL097814

Quentin Beaufils, Julien Lefebve, Joel Gomes Baptista, Raphaël Piccon, Valentin Cambier, Leonid A. Sidorenkov, Christine Fallet, Thomas Lévèque, Sébastien Merlet, Franck Pereira Dos Santos,
"Rotation related systematic effects in a cold atom interferometer onboard a Nadir pointing satellite",
NPJ Microgravity 9, 53 (2023), https://doi.org/10.1038/s41526-023-00297-w

Becker, D., Lachmann, M.D., Seidel, S.T., Ahlers, H., Dinkelaker, A.N., Grosse, J., Hellmig, O., Müntinga, H., Schkolnik, V., Wendrich, T., Wenzlawski, A., Weps, B., Corgier, R., Franz, T., Gaaloul, N., Herr, W., Lüdtke, D., Popp, M., Amri, S., Duncker, H., Erbe, M., Kohfeldt, A., Kubelka-Lange, A., Braxmaier, C., Charron, E., Ertmer, W., Krutzik, M., Lämmerzahl, C., Peters, A., Schleich, W.P., Sengstock, K., Walser, R., Wicht, A., Windpassinger, P., Rasel, E.M., 2018.
Space-borne Bose–Einstein condensation for precision interferometry

Nature 562, 391–395. https://doi.org/10.1038/s41586-018-0605-1

Bidel, Y., Zahzam, N., Blanchard, C., Bonnin, A., Cadoret, M., Bresson, A., Rouxel, D., Lequentrec-Lalancette, M.F., 2018.
Absolute marine gravimetry with matter-wave interferometry

Nature Communications 9. https://doi.org/10.1038/s41467-018-03040-2

Bidel, Y., Zahzam, N., Bresson, A., Blanchard, C., Cadoret, M., Olesen, A.V., Forsberg, R., 2020.
Absolute airborne gravimetry with a cold atom sensor.
J Geod 94, 20. https://doi.org/10.1007/s00190-020-01350-2

Bidel, Y., Zahzam, N., Bresson, A., Blanchard, C., Bonnin, A., Bernard, J., et al. (2023).
Airborne absolute gravimetry with a quantum sensor, comparison with classical technologies
Journal of Geophysical Research: Solid Earth, 128, e2022JB025921. https://doi.org/10.1029/2022JB025921

Carraz, O., Siemes, C., Massotti, L., Haagmans, R., Silvestrin, P., 2015.
Measuring the Earth’s gravity field with cold atom interferometers
arXiv:1506.03989 [physics, physics:quant-ph].

Carraz, O., Siemes, C., Massotti, L., Haagmans, R., Silvestrin, P., 2014
A Spaceborne Gravity Gradiometer Concept Based on Cold Atom Interferometers for Measuring Earth’s Gravity Field
Microgravity Science and Technology 26, 139. https://doi.org/10.1007/s12217-014-9385-x

Chiow, S., Williams, J., Yu, N., 2015.
Laser-ranging long-baseline differential atom interferometers for space
Physical Review A 92. https://doi.org/10.1103/PhysRevA.92.063613

Douch, K., Wu, H., Schubert, C., Müller, J., Pereira dos Santos, F., 2018
Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery
Advances in Space Research 61, 1307–1323. https://doi.org/10.1016/j.asr.2017.12.005

Farah, T., Guerlin, C., Landragin, A., Bouyer, P., Gaffet, S., Pereira Dos Santos, F., Merlet, S., 2014.
Underground operation at best sensitivity of the mobile LNE-SYRTE Cold Atom Gravimeter
Gyroscopy and Navigation, Vol. 5, No. 4, pp. 266–274, https://doi.org/10.1134/S2075108714040051

Freier, C., Hauth, M., Schkolnik, V., Leykauf, B., Schilling, M., Wziontek, H., Scherneck, H.-G., Müller, J., Peters, A., 2016
Mobile quantum gravity sensor with unprecedented stability
Journal of Physics: Conference Series 723, 012050. https://doi.org/10.1088/1742-6596/723/1/012050

Haagmans, R., Siemes, C., Massotti, L., Carraz, O., Silvestrin, P., 2020
ESA’s next-generation gravity mission concepts
Rend. Fis. Acc. Lincei. https://doi.org/10.1007/s12210-020-00875-0

Heine, N., Matthias, J., Sahelgozin, M. et al.
A transportable quantum gravimeter employing delta-kick collimated Bose–Einstein condensates
Eur. Phys. J. D 74, 174 (2020). https://doi.org/10.1140/epjd/e2020-10120-x

Camille Janvier, Vincent Ménoret, Bruno Desruelle, Sébastien Merlet, Arnaud Landragin, and Franck Pereira dos Santos
Compact differential gravimeter at the quantum projection-noise limit
Phys. Rev. A 105, 022801 (2022). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.105.022801

Junca, J., Bertoldi, A., Sabulsky, D.O., Lefèvre, G., Zou, X., Decitre, J.-B., Geiger, R., Landragin, A., Gaffet, S., Bouyer, P., Canuel, B., 2019
Characterizing Earth gravity field fluctuations with the MIGA antenna for future gravitational wave detectors
Phys. Rev. D 99, 104026. https://doi.org/10.1103/PhysRevD.99.104026

Karcher, R., Imanaliev, A., Merlet, S., Pereira dos Santos, F., 2018
Improving the accuracy of atom interferometers with ultracold sources
New J. Phys. 20, 113041. https://doi.org/10.1088/1

Knabe, A., Manuel Schilling, Hu Wu, Alireza HosseiniArani, Jürgen Müller, Quentin Beaufils & Franck Pereira dos Santos  (2022)
The Benefit of Accelerometers Based on Cold Atom Interferometry for Future Satellite Gravity Missions
In: Freymueller, J.T., Sánchez, L. (eds) Geodesy for a Sustainable Earth. International Association of Geodesy Symposia, vol 154. Springer, Cham. https://doi.org/10.1007/1345_2022_151367-2630/aaf07d

Lachmann, M.D., Ahlers, H., Becker, D. et al.
Ultracold atom interferometry in space
Nat Commun 12, 1317 (2021). https://doi.org/10.1038/s41467-021-21628-z

Lautier, J., Volodimer, L., Hardin, T., Merlet, S., Lours, M., Pereira dos Santos, F., Landragin, A., 2014.
Hybridizing matter-wave and classical accelerometers
Appl. Phys. Lett. 105, 144102. https://doi.org/10.1063/1.4897358

Lévèque, T., Fallet, C., Mandea, M., Biancale, R., Lemoine, J.M., Tardivel, S., Delpech, M., Ramillien, G., Panet, J., Bourgogne, S., Santos, F.P.D., Bouyer, P., 2019
Correlated atom accelerometers for mapping the Earth gravity field from Space
in: International Conference on Space Optics — ICSO 2018. Presented at the International Conference on Space Optics — ICSO 2018, International Society for Optics and Photonics, p. 111800W. https://doi.org/10.1117/12.2535951

Lévèque, C. Fallet, M. Mandea, R. Biancale, J. M. Lemoine, S. Tardivel, S. Delavault, A. Piquereau, S. Bourgogne,  F. Pereira Dos Santos, B. Battelier, Ph. Bouyer, 2021
Gravity Field Mapping Using Laser-Coupled Quantum Accelerometers in Space
Journal of Geodesy 95, 15. https://doi.org/10.1007/s00190-020-01462-9

T. Lévèque, C. Fallet, J. Lefebve, A. Piquereau, A. Gauguet, B. Battelier, P. Bouyer, N. Gaaloul, M. Lachmann, B. Piest, E. Rasel, J. Müller, C. Schubert, Q. Beaufils, F. Pereira Dos Santos
CARIOQA: Definition of a Quantum Pathfinder Mission
arXiv:2211.01215, https://doi.org/10.48550/arXiv.2211.01215

Ménoret, V., Vermeulen, P., Le Moigne, N., Bonvalot, S., Bouyer, P., Landragin, A., Desruelle, B., 2018
Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter
Scientific Reports 8. https://doi.org/10.1038/s41598-018-30608-1

Merlet, S., Bodart, Q., Malossi, N., Landragin, A., Pereira Dos Santos, F., Gitlein, O., Timmen, L., 2010
Comparison between two mobile absolute gravimeters: optical versus atomic interferometers
Metrologia 47, L9–L11. https://doi.org/10.1088/0026-1394/47/4/L01

S. Merlet, P. Gillot, B. Cheng, R. Karcher, A. Imanaliev, L. Timmen, F. Pereira Dos Santos, 2021
Calibration of a superconducting gravimeter with an absolute atom gravimeter
Journal of Geodesy 95, 62. https://doi.org/10.1007/s00190-021-01516-6

Migliaccio, F., Reguzzoni, M., Batsukh, K., Tino, G.M., Rosi, G., Sorrentino, F., Braitenberg, C., Pivetta, T., Barbolla, D.F., Zoffoli, S., 2019
MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field
Surv Geophys 40, 1029–1053. https://doi.org/10.1007/s10712-019-09566-4

Migliaccio, F., Reguzzoni, M., Rosi, G. et al.,
The MOCAST+ Study on a Quantum Gradiometry Satellite Mission with Atomic Clocks
Surv Geophys 44, 665–703 (2023). https://doi.org/10.1007/s10712-022-09760-x

Reguzzoni, M., Migliaccio, F. & Batsukh, K.
Gravity Field Recovery and Error Analysis for the MOCASS Mission Proposal Based on Cold Atom Interferometry
Pure Appl. Geophys. 178, 2201–2222 (2021). https://doi.org/10.100/s00024-021-02756-5

Siemes, C., Maddox, S., Carraz, O. et al., 2022
CASPA-ADM: a mission concept for observing thermospheric mass density
CEAS Space J. https://doi.org/10.1007/s12567-021-00412-1

Ben Stray, Andrew Lamb, Aisha Kaushik, Jamie Vovrosh, Anthony Rodgers, Jonathan Winch, Farzad Hayati, Daniel Boddice, Artur Stabrawa, Alexander Niggebaum, Mehdi Langlois, Yu-Hung Lien, Samuel Lellouch, Sanaz Roshanmanesh, Kevin Ridley, Geoffrey de Villiers, Gareth Brown, Trevor Cross, George Tuckwell, Asaad Faramarzi, Nicole Metje, Kai Bongs & Michael Holynski
Quantum sensing for gravity cartography
Nature volume 602, pages 590–594 (2022), https://www.nature.com/articles/s41586-021-04315-3

Trimeche, A., Battelier, B., Becker, D., Bertoldi, A., Bouyer, P., Braxmaier, C., Charron, E., Corgier, R., Cornelius, M., Douch, K., Gaaloul, N., Herrmann, S., Müller, J., Rasel, E.M., Schubert, C., Wu, H., Pereira dos Santos, F., 2019
Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry
Class. Quantum Grav. https://doi.org/10.1088/1361-6382/ab4548

L. Wörner, B.C. Root, P. Bouyer, C. Braxmaier, D. Dirkx, J. Encarnação, E. Hauber, H. Hussmann, Ö. Karatekin, A. Koch, L. Kumanchik, F. Migliaccio, M. Reguzzoni, B. Ritter, M. Schilling, C. Schubert, C. Thieulot, W.v. Klitzing, O. Witasse,
MaQuIs—Concept for a Mars Quantum Gravity Mission

Planetary and Space Science, Volume 239, 2023, https://doi.org/10.1016/j.pss.2023.105800.

Nassim Zahzam, Bruno Christophe, Vincent Lebat, Emilie Hardy, Phuong-Anh Huynh, Noémie Marquet, Cédric Blanchard, Yannick Bidel, Alexandre Bresson, Petro Abrykosov, Thomas Gruber, Roland Pail, Ilias Daras, Olivier Carraz
Hybrid Electrostatic–Atomic Accelerometer for Future Space Gravity Missions
Remote Sens. 2022, 14(14), 3273; https://doi.org/10.3390/rs14143273

IAG Events