2020-03-09

WG Q.1: Quantum gravimetry in space and on ground

Chair: Franck Pereira dos Santos, Paris, France
Vice-Chair: Michel van Camp, Brussels, Belgium

Description

On ground, quantum sensors based on matter wave interferometry with cold atoms are very well suited for rapid and very precise gravity sensing. They can be used as registration instruments and as absolute gravimeters with sub-µGal accuracy. Mobile devices are developed for field campaigns and large-scale stationary devices for achieving extreme precision. While the former enable new strategies for local and regional gravity surveys, the latter will provide a new gravity standard in the future.

In space, the long-term stability and low noise level of quantum sensors will allow improving the spatial gravity field models in GOCE-type gradiometer missions. The determination of mass transport processes on Earth at low and medium degrees in GRACE-type missions will benefit from quantum accelerometers providing the measurement of the specific non-conservative forces. In addition, hybrid systems (i.e. a combination of electrostatic and atom-interferometric accelerometers) can cover a wider spectral range which will greatly support navigation and inertial sensing on ground and in space.

The goal of this WG is to elaborate the major benefit and most promising applications of atom interferometry for gravimetry and inertial sensing in space and on ground.

Objectives

  • Terrestrial quantum gravimeters and applications scenarios (including airborne and marine instruments)
  • (Hybrid) accelerometers for space missions and spacecraft navigation
  • Atom interferometric gradiometry
  • Elaboration of further applications / space demonstrator (e.g. pathfinder) like atmosphere research, relativity tests, etc.
  • Elaboration of synergies between different science topics in a single mission (Earth observation and fundamental physics, navigation and space exploration, several scenarios for Earth observation, e.g. gravimetry, atmospheric research and magnetometry)

Members (preliminary, to be finally confirmed)


Selected publications


Abrykosov, P., Pail, R., Gruber, T., Zahzam, N., Bresson, A., Hardy, E., Christophe, B., Bidel, Y., Carraz, O., Siemes, C., 2019. Impact of a novel hybrid accelerometer on satellite gravimetry performance. Advances in Space Research 63, 3235–3248. https://doi.org/10.1016/j.asr.2019.01.034

Becker, D., Lachmann, M.D., Seidel, S.T., Ahlers, H., Dinkelaker, A.N., Grosse, J., Hellmig, O., Müntinga, H., Schkolnik, V., Wendrich, T., Wenzlawski, A., Weps, B., Corgier, R., Franz, T., Gaaloul, N., Herr, W., Lüdtke, D., Popp, M., Amri, S., Duncker, H., Erbe, M., Kohfeldt, A., Kubelka-Lange, A., Braxmaier, C., Charron, E., Ertmer, W., Krutzik, M., Lämmerzahl, C., Peters, A., Schleich, W.P., Sengstock, K., Walser, R., Wicht, A., Windpassinger, P., Rasel, E.M., 2018. Space-borne Bose–Einstein condensation for precision interferometry. Nature 562, 391–395. https://doi.org/10.1038/s41586-018-0605-1

Bidel, Y., Zahzam, N., Blanchard, C., Bonnin, A., Cadoret, M., Bresson, A., Rouxel, D., Lequentrec-Lalancette, M.F., 2018. Absolute marine gravimetry with matter-wave interferometry. Nature Communications 9. https://doi.org/10.1038/s41467-018-03040-2

Bidel, Y., Zahzam, N., Bresson, A., Blanchard, C., Cadoret, M., Olesen, A.V., Forsberg, R., 2020. Absolute airborne gravimetry with a cold atom sensor. J Geod 94, 20. https://doi.org/10.1007/s00190-020-01350-2

Carraz, O., Siemes, C., Massotti, L., Haagmans, R., Silvestrin, P., 2015. Measuring the Earth’s gravity field with cold atom interferometers. arXiv:1506.03989 [physics, physics:quant-ph].

Carraz, O., Siemes, C., Massotti, L., Haagmans, R., Silvestrin, P., 2014. A Spaceborne Gravity Gradiometer Concept Based on Cold Atom Interferometers for Measuring Earth’s Gravity Field. Microgravity Science and Technology 26, 139. https://doi.org/10.1007/s12217-014-9385-x

Chiow, S., Williams, J., Yu, N., 2015. Laser-ranging long-baseline differential atom interferometers for space. Physical Review A 92. https://doi.org/10.1103/PhysRevA.92.063613

Douch, K., Wu, H., Schubert, C., Müller, J., Pereira dos Santos, F., 2018. Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery. Advances in Space Research 61, 1307–1323. https://doi.org/10.1016/j.asr.2017.12.005

Farah, T., Guerlin, C., Landragin, A., Bouyer, P., Gaffet, S., Pereira Dos Santos, F., Merlet, S., 2014. Underground operation at best sensitivity of the mobile LNE-SYRTE Cold Atom Gravimeter. Gyroscopy and Navigation, Vol. 5, No. 4, pp. 266–274, https://doi.org/10.1134/S2075108714040051

Freier, C., Hauth, M., Schkolnik, V., Leykauf, B., Schilling, M., Wziontek, H., Scherneck, H.-G., Müller, J., Peters, A., 2016. Mobile quantum gravity sensor with unprecedented stability. Journal of Physics: Conference Series 723, 012050. https://doi.org/10.1088/1742-6596/723/1/012050

Haagmans, R., Siemes, C., Massotti, L., Carraz, O., Silvestrin, P., 2020. ESA’s next-generation gravity mission concepts. Rend. Fis. Acc. Lincei. https://doi.org/10.1007/s12210-020-00875-0

Junca, J., Bertoldi, A., Sabulsky, D.O., Lefèvre, G., Zou, X., Decitre, J.-B., Geiger, R., Landragin, A., Gaffet, S., Bouyer, P., Canuel, B., 2019. Characterizing Earth gravity field fluctuations with the MIGA antenna for future gravitational wave detectors. Phys. Rev. D 99, 104026. https://doi.org/10.1103/PhysRevD.99.104026

Karcher, R., Imanaliev, A., Merlet, S., Santos, F.P.D., 2018. Improving the accuracy of atom interferometers with ultracold sources. New J. Phys. 20, 113041. https://doi.org/10.1088/1367-2630/aaf07d

Lautier, J., Volodimer, L., Hardin, T., Merlet, S., Lours, M., Santos, F.P.D., Landragin, A., 2014. Hybridizing matter-wave and classical accelerometers. Appl. Phys. Lett. 105, 144102. https://doi.org/10.1063/1.4897358

Lévèque, T., Fallet, C., Mandea, M., Biancale, R., Lemoine, J.M., Tardivel, S., Delpech, M., Ramillien, G., Panet, J., Bourgogne, S., Santos, F.P.D., Bouyer, P., 2019. Correlated atom accelerometers for mapping the Earth gravity field from Space, in: International Conference on Space Optics — ICSO 2018. Presented at the International Conference on Space Optics — ICSO 2018, International Society for Optics and Photonics, p. 111800W. https://doi.org/10.1117/12.2535951

Ménoret, V., Vermeulen, P., Le Moigne, N., Bonvalot, S., Bouyer, P., Landragin, A., Desruelle, B., 2018. Gravity measurements below 10−9 g with a transportable absolute quantum gravimeter. Scientific Reports 8. https://doi.org/10.1038/s41598-018-30608-1

Merlet, S., Bodart, Q., Malossi, N., Landragin, A., Pereira Dos Santos, F., Gitlein, O., Timmen, L., 2010. Comparison between two mobile absolute gravimeters: optical versus atomic interferometers. Metrologia 47, L9–L11. https://doi.org/10.1088/0026-1394/47/4/L01

Migliaccio, F., Reguzzoni, M., Batsukh, K., Tino, G.M., Rosi, G., Sorrentino, F., Braitenberg, C., Pivetta, T., Barbolla, D.F., Zoffoli, S., 2019. MOCASS: A Satellite Mission Concept Using Cold Atom Interferometry for Measuring the Earth Gravity Field. Surv Geophys 40, 1029–1053. https://doi.org/10.1007/s10712-019-09566-4

Trimeche, A., Battelier, B., Becker, D., Bertoldi, A., Bouyer, P., Braxmaier, C., Charron, E., Corgier, R., Cornelius, M., Douch, K., Gaaloul, N., Herrmann, S., Müller, J., Rasel, E.M., Schubert, C., Wu, H., Pereira dos Santos, F., 2019. Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry. Class. Quantum Grav. https://doi.org/10.1088/1361-6382/ab4548


IAG Events